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ABSTRACT

New proofs and extensions are given of a sum considered by A. M. Din

involving Clebsch-Gordan coefficients with zero magnetic quantum numbers and

of an integral involving the product of three Legendre functions, one of the
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AN INTEGRAL OF PRODUCTS OF LEGENDRE FUNCTIONS
AND A CLEBSCH-GORDAN SUM

Richard Askey

Din [I] showed that

c+b 22±+1 Cc~ ) - o (1)

i-Ic-bI i(i+1) - a(a+1) b0

ia

when a, b and c are non-negative integers with a + b + c odd and

I c-bI < a < c+b. The Clebsch-Gordan coefficients with zero magnetic quantum

numbers are given by

co ~2 2c+1 1 () x) 2
' iobd 2 1 dxP (x)b x)c(x) C2

This integral was evaluated by Ferrers and others in the last century. The

evaluation comes from the linearization formula

ft =,Pn(x)Pm ( x) "

Min (a,n) 0/2 ) m-k(12 ) n-k 02 ) k(m~n-k) I (m+n-2k+ 1/2) (3)k 0- (m-k),I n-k),Ik, I,1 I k(~ -+12 PM n 2

and the orthogonality of Legendre polynomials. See [2] o To show (1) Din

reduced it to showing that

I(a,b,c) P dx r4)x'-1 Qa XPb(x)Pc(x) - 0 (4)

when a, b, c > 1 are integers, a + b + c is odd and Ic-al < b < c+a.

Here Pi(x) is the Legendre polynomial and Qa(x) is the Legendre function

of the second kind on the cut [-1,1) . He ended the paper by stating that I

could evaluate (4) for general integers a, b, c. The details follow.

Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706.

Sponsored by the United States Army under contract No. DAAG29-80-C-0041. This
work was partially supported by the National Science Foundation under Grant
140 • CS-8101S68.

• l - I I I
......... ............................................................................................- ~



' . . . .. . . . . . I , , m . m m mm n -i , t = gA . W - .n.u -e c .. qt

* Din started with

dx (() 1- os(b-a)w e,* aib(5
-1 QaXbX (b-a)(b+a+ ) , a,b - 1,2,..., a jd b ,

with a reference to (3]. A generalization of (5) is given there when a 4

and b are complex, Re a > 0, Re b > 0, and the extra term which occurs

vanishes when either a or b is an integer. The argument in [3] used the

Legendre differential equation. Here is a second derivation of (5). Start

with an expansion of Heine [4]

2 at0 j) 11 )(al 09a+21+1)0"aoo e) - 3o a++2-!)
aa i-0 I1(a+ 2)

The shifted factorial (c)n is defined by

Cc) = r(n+c)/r(c) -c(c+)oo*(c+n-l)

Since Pa-X) - (l-)aPa(x) and Qa(-x) - (-l)a+lQalx), a-0,1,..., we may

assume a and b have opposite parity, for the integral in (5) vanishes

when a and b have the same parity. Then

I~~,)-2 al 0/)1 a
4u

IIa Oi -- ') fo de oosla+2i+1)0 sin e P (cos e)

3 - 3 1 0 b
2 a (a+ )

2l &1 02)j (a+l)i (a+21+l)(i+(a+bl)/2)1(-1/2) +(, b),2
3 . 3 3
(I ) i-0 ii(a+ 2 i( )i+(a+b+l)/2 Ci+(a+l-b)/

2 )1

by a special case of an integral of Gegenbauer which is equivalent to [5]

2C ( (-A) (n-2k+)A
C(n (x) k.10 (X+1)n-kk X C n-2k (x)

where C Xx) is the ultraspherical polynomial.
n

The above sum can be written as a generalized hypergeometric series and

then summed by a formula of Dougall (6]. A more general sume of Dougall will

be stated below. A routine reduction shows that (5) holds when

a,b - 0,,..., with the integral equal to zero when a m b.
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To compute the evaluation of (4) use the Ferrero-Adams linearization

formula (3) and (5) to obtain

m infbc) 02 ) b-k /2 )c-k 2 ) k(b~c-k) I(b+c-2k+ 1/2)
I(a,b,c) = k 1O (b-k) I (c-k)iI 02 ) b+c-k (b~-k+ /2)

1-cos(b~c-2k-a)w]
(b+c-a-2k)(b+c+a+1-2k)

1 -coos(b+c-a)1Tt]& 2 ) b /2 ) c(b+c) 1
- (b+c-&) (b+c+&+1 )blcI e/2 )b+,,

7 (-b/2-c/2- 1/2,1/ -b,-b-c,(1-a-b-c)/2,(24e-b-c)/2

Douqall's sum of the very veil poised 2-balanced 7F6 (71,

F~I +a/2,b,c,d,e,-n
* 7F6(a/2,1+a-b,1+a-c,1+a-d,1+a-e,1+a+n

(1+a) (1+a-b-c) (1+a-b-d) (1+a-c-d)n n n n
(14a-b) (1+a-c) (I1+a-d) (1+a-c-d)

when 1+2a =b+c+d+e-n, can be used and the result is

[I-coos(b+c-a)wJ (-(b+c+a)/a) ((b-c-a+1)/2)
c CC

(b+c-a) Cb+c+a+l)(-(b+c+a-1)/2) ((b-c-a)/2)
C c

when 0 < b c, a+b+c odd, and zero when a+b+c is even. Since this

integral vanishes when b+c+a is even, we may write a b+c+1+2k * The

integral is then
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-1 'b+c+ l+2k Pb(x)Pc(x)
1 (10)

r (k+b+c+ 2 ) r (k+b+1) r (k+c+1) r (k+ 1/2 )

2r(k+b+c+2)r(k+b+ 2 )rck+c+ 2)r(k+1)2 2

* This integral vanishes when k - -1,-2,...,- min(b,c) as was shown by Din.

Since (5) holds when a is not an integer, and the rest of the above

argument only used the integrality of b and c, formula (8) continues to

hold when Re a > 0. In this case it is better to write it as

2 2
x1 Qa (x ) b(x)pc(x) - -b-a+1 b-c-a+1

(b+c-a)(b+c+a+l)F r

2 2

--r -c , Re a > 0, b,c t 0,1,...,

with an appropriate limit taken when one of the gamma functions has a pole.

The sum in (1) can be evaluated in exactly the same way, only the details

are easier. One only needs to use (2) to replace the Clebech-Gordan

coefficients by a known integral, rewrite the series as a generalized

hypergeometric series and use Dougall's sum (8). Fortunately Din was unaware

of Dougall's sum, for the integral in (11) seems to be a fundamental result,

and it does not seem to have been evaluated before. I was surprised by this,

since Robson [8] wrote that P. Z. Neumann had evaluated this integral.

However it is not given in the book of Neumann that Hobson mentions nor in the

other book of Neumann that I have looked at.
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